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 In this study, a mixed rule of degree of precision nine has been developed 
and implemented in the field of electrical sciences to obtain the instantaneous 

current in the RLC circuit for particular value (R = 1,L = 1,C = 1) .  

The linearity has been performed with the Volterra’s integral equation  

of second kind with particular kernel (1 + (𝑡 −𝑥)) . Then the definite 

integral has been evaluated through the mixed quadrature to obtain  

the numerical result which is very effective. A polynomial has been used  

to evaluate Volterra’s integral equation in the place of unknown functions.  

The accuracy of the proposed method has been tested taking different 
electromotive force in the circuit and absolute error has been estimated. 
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1. INTRODUCTION  

Various problems of Mathematical Science are often resolved within reformulat ion of different 

mathematical problems like integral equations. So, the study of integral equations and the ways of finding 

methods for it are quite helpful. Now-a-days, Volterra’s equations have been implemented in the fields  

of Mathemat ics and Technology. Some valid methods, for solving Volterra’s equations have been developed 

by many researchers. The chebyshev polynomials is one of the methods to find  the solution of integral 

equation by Rahman [1]. In particu lar, Huang [2] has solved the unknown function by using the Taylor’s 

expansion. Mixed quadrature has faster convergence due to higher degree of precision for evaluation of real 

definite integrals. Piessen [3], Wazwaz [4], Jerri [5], Kreyszig [6], Pundir [7], Swarup [8 ], Conte  

and Boor [9] developed a method for computing integral transforms by Chebyshev polynomial 

approximations. Mixed  quadrature has faster convergence due to higher degree of precision for evaluation of 

real defin ite integrals. The mixed quadrature of h igher precision has been established with linear convex 

combination of Gaussian and Newtonian type rule of lower precision for single variables. Recently mixed  

quadrature has been successfully used for the numerical solution of integral equations as well as fin ite 

element methods. A step have been carried out by Dash and Das [10], Jena and Nayak [11] Tripathy  

et al. [12]. Das and Pradhan [13] Jena and Dash [14], Rokhlin and Wandzura [15], Jena and Nayak [16],  

Islam et al. [17], Rathod et.al. [18], Chakrabart i and Martha [19], for numerical solution of non linear 

Fredholm equation of second kind. Oliver [20], Davis and Rabinowitz [21], Dash and Das [22] proposed 

identification of some Clenshaw-Curtis rule with Fejer rules. Motivated by the excellent performance  

of these methods, we have applied the resolvent kernel to find the solution of Volterra’s integral equation  

for numerical integration of real definite integrals for single variables which has been applied in the field   
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of RLC circuit. The proposed work to find instantaneous current in RLC circu it with the help of Volterra’s  

equations with mixed rule for the integral equation of type: 

 

        ,
0

dttutpkpfpu

p

        (1) 

 

where 𝑝 ∈ [0, 𝑡]
,
 𝑓(𝑝) is the source function and k  is the kernel which are g iven and 𝑢(𝑝) is the unknown 

function and 𝜆 is a non zero real or complex parameter.  

Application of Kirchhoff’s Voltage law transfoms the d ifferential equation of RLC circuit   

to Volterra’s integral equation of second kind then it can be made higher precision rule for higher rate  

of convergence towards the exact value of the integral by mixed  quadrature ru le o f Clenshaw Cutis seven 

point rule and Lobatto five point ru le by Singh and Dash  [23], Laurie  [24] and Atkinson [25]. This proposed 

work is organized  as follows. Section 1 meants for the introduction. In Section  2, Kirchhoff’s Voltage law 

and an approximated solution for the Volterra integral equation of second kind is established. In Section 3,  

a mixed  quadrature rule is constructed which is approximately convergence to the exact  solution and error 

bound is estimated for the suggested method. In Section 4 approximate solutions for various problems  

are found. In Section 5 some conclusions are drawn. 

 

 

2. BASIC PROPERTIES OF KIRCHHOFF’S VOLTAGE LAW AND VOLTERRA  

INTEGRAL EQUATION 

In this section, some basic properties have been used for defin itions of Kirchhoff’s Voltage law  

and Volterra integral equation of second kind of (1). According to KVL, the integro-differential equation  

for RLC circuit is given in Figure 1. 

 

 
1

LI RI I dt E t
C

          (2) 

 

where  tE is the electromotive force. 0E =constant, L =Inductance, R =Resistance, C =Capacitance  

and  tI =The instantaneous current. 

 

 

 
 

Figure 1. RLC circuit 

 

 

The integral (1) after differentiation becomes : 

 

 
L

tE
I

LC
I

L

R
I




1
       (3) 

 

The (3) is a non homogeneous second order differential equation. 
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2.1. Volterra’s integral equation 

Here some basic theorems are given below to solve the Volterra’s integral equation of second kind 

which is of the form (1). 

Theorem-2.1           

The init ial value problem which is of the      tfItD
dt

dI
tC

dt

Id


2

2

 with the initial condition

    00, IcIIcI   is transformed to Volterra’s integral equation of second kind is of the form  

 

 
       

          

0 0 0

t

a

t

a

I I I C c t c t p f p dp

I t

C p t p D p C p I p dp

 
        

 
 
       





 

 

Proof:            

Here we have given the differential equation      tfItD
dt

dI
tC

dt

Id


2

2

 with the initial 

condition     00, IcIIcI  . Then integrating twice with respect to t  from ttoc  we get 

 
 

       

          

0 0 0

t

a

t

a

I I I C c t c t p f p dp

I t

C p t p D p C p I p dp

 
        

 
 
       





which is the required Volterra’s Integral 

equation of second kind. 

Theorem-2.2 

The resolvent kernel of the kernel  tpk , is a polynomial of degree
 
 1n  in

 
t  which is express 

in the form
 

           
 

  ....
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....,
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n

tD
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where the coefficient  tDn  are continuous in the interval
 
 c,0  is

 
   


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1
;, pt
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d
tpR

n
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Proof:  

Consider
 
   


 ;,

1
;, pt
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d
tpR

n

n


     (4) 

 

The auxiliary function
 
  satisfies the following conditions : 

 

0....
2

2






n

n

dp

d

dp

d 
  at

 
pt 

 
1

1

1



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n

n

dp

d 
 at

 
pt      (5) 

 

therefore, the functional relation reduces to: 

 

     
t

s

n

n

n

n

dszt
ds

d
pzktpk

dp

d



;,,,     (6)  

 

integrating by parts in (4) and (5)
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hence the resolvent kernel is of the form. 

 

   


 ;,
1

;, pt
dt

d
tpR

n

n

  

 

In this case study, we have used a polynomial in the place of the unknown function  pI   

for the transcendental function for making: 

 

 

 

 

 

, 1,2 ( )
2

, 1
( ) 2

, 2 ( )

, 3
4

i

f t
for i Trigonometric function

f t
if t

I p

f t if t Exponential function

f t
if t


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
 

    
 
   

   (7) 

 

exponential function (oscillatory function) to convert smooth function. 

 

 

3. CONSTRUCTION OF MIXED QUADRATURE RULE 

In this section, a mixed quadrature ru le has been constructed by the convex combination  

of Clenshaw-Curt is seven point rule  fRCC7  and Gauss Lobatto-five point rule  fRL5 and also the error 

bound estimated which has been given by the following theorems.
 

Theorem-3.1  

The quadrature rule and error for the s mooth function  pf  which  is defined on 10  p   

is obtained by convex combination of Clenshaw-Curtis seven point rule  fRCC7  and the Gauss  

Lobatto-five point ru le  fRL5  rules formed mixed quadrature ru le of degree of precision nine  

)(57 fR LCC , then 
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Each of the ru le  fRCC7

 

and  fRL5  is of degree of precision seven where  fECC7  is the error due to 

 fRCC7  and  fEL5  is the error due to  fRL5  

 

     fEfRfI CCCC 77         (8)
 

 

     fEfRfI LL 55         (9) 

 

Expanding in (8) and (9) with the help of Taylor’s series, we get:
 

 

       ........0
!1229120
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0
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1
0
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1
7

xiixviii
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






  
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8256
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128
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32
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xiixviii
L ffffE


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
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
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Multiplying 








7

32
 
with (8) and 









4

1
 with (9) and adding them respectively.  

 

 
 

Then      fEfRfI LCCLCC 5757 
 where: 

      fRfRfR LCCLCC 5757 7128
135

1
      (10)

  

 

and       fEfEfE LCCLCC 5757 7128
135

1
      (11) 

 

in (10) is our proposed mixed rule. 

Theorem-3.2 

Let the smooth function  pf  is defined on 11  p , then the error  fE LCC 57  is associated 

with the mixed quadrature rule  fR LCC 57 is given by: 

 

   0
!1015092

463
57

x
LCC ffE


  

 

Proof: 

The proof follows from (11). 

Theorem-3.3 

The truncated error bound for      fRfIfE LCCLCC 5757   is evaluated by: 

 

 
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
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M
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Proof: 
 

     1,1,
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Hence  
!842525
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57




M
fE LCC  where  pfM ix
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
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4. NUMERICAL VERIFICATION  

In this section, Table 1 and Figure 2 for the numerical approximat ion of RLC-circuit for the mixed  

quadrature rule  fR LCC 57  with the initial conditions     10,00  II are prepared. 

 
 

Table 1. Comparison of exact result with approximate result
 

 tf
 EXACTI

 57LCCI
 

|Error| 

tsin
 

0.841470984807897 amp 0.841492252269964 amp 0.000021267462067 

tcos
 

0.414109347591131 amp 0.415287660821751 amp 0.001178313230620 
te

 
1.041865355098910 amp 1.041834401921017 amp 0.000030953177893 

 
 

 
 

Figure 2. Comparison of exact result with approximate 
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5. CONCLUSION 

The RLC circu it problem is resolved through integral equation of second kind with suitable kernel 

which is Volterra in nature. The approximate solution can be achieved by taking a few calculations which  

is much better. The results obtained by the presented method to introduce KVL for solving the said integral 

equation reveals found tobe more effective and convenient. The efficiency of the method is verified 

numerically by taking some test problems in Table 1 and it is depicted in Figure 2. The extensive work  

for finding instantaneous current for any value of R, L and C and for any function  tf  can be carried out. 
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